An Evolutionary Algorithm for Controlling Chaos: The Use of Multi-objective Fitness Functions
نویسنده
چکیده
In this paper, we study an evolutionary algorithm employed to design and optimize a local control of chaos. In particular, we use a multi–objective fitness function, which consists of the objective function to be optimized and an auxiliary quantity applied as an additional driving force for the algorithm. Numerical results are presented illustrating the proposed scheme and showing the influence of employing such a multi–objective fitness function on convergence of the algorithm.
منابع مشابه
An Approach to Reducing Overfitting in FCM with Evolutionary Optimization
Fuzzy clustering methods are conveniently employed in constructing a fuzzy model of a system, but they need to tune some parameters. In this research, FCM is chosen for fuzzy clustering. Parameters such as the number of clusters and the value of fuzzifier significantly influence the extent of generalization of the fuzzy model. These two parameters require tuning to reduce the overfitting in the...
متن کاملEMCSO: An Elitist Multi-Objective Cat Swarm Optimization
This paper introduces a novel multi-objective evolutionary algorithm based on cat swarm optimizationalgorithm (EMCSO) and its application to solve a multi-objective knapsack problem. The multi-objective optimizers try to find the closest solutions to true Pareto front (POF) where it will be achieved by finding the less-crowded non-dominated solutions. The proposed method applies cat swarm optim...
متن کاملA New Multi-objective Job Shop Scheduling with Setup Times Using a Hybrid Genetic Algorithm
This paper presents a new multi objective job shop scheduling with sequence-dependent setup times. The objectives are to minimize the makespan and sum of the earliness and tardiness of jobs in a time window. A mixed integer programming model is developed for the given problem that belongs to NP-hard class. In this case, traditional approaches cannot reach to an optimal solution in a reasonable...
متن کاملPresenting an evolutionary improved algorithm for the multi-objective problem of distribution network reconfiguration in the presence of distributed generation sources and capacitor units with regard to load uncertainty.
Reconfiguration of distribution network feeders is one of the well-known and effective strategies in the distribution network to obtain a new optimal configuration for the distribution feeders by managing the status of switches in the distribution network. This study formulates the multi-objective problem of reconfiguration of a distribution network in the optimal presence of distributed genera...
متن کاملA Hybrid MOEA/D-TS for Solving Multi-Objective Problems
In many real-world applications, various optimization problems with conflicting objectives are very common. In this paper we employ Multi-Objective Evolutionary Algorithm based on Decomposition (MOEA/D), a newly developed method, beside Tabu Search (TS) accompaniment to achieve a new manner for solving multi-objective optimization problems (MOPs) with two or three conflicting objectives. This i...
متن کامل